

JIALE LI

(IELTS: 7.5; GRE: V156 Q170)

✉ deigel.me Ⓛ github.com/Deigel

✉ 23120829@bjtu.edu.cn ⓠ (+86) 130-838-04213

🎓 EDUCATION

Beijing University of Technology (BJUT), Beijing, China

2019 – 2023

B.Eng. in Traffic Engineering

【GPA】 88.8/100

【Core Courses】 Operations Research (94); Advanced Mathematics (98); Game Theory and its economic applications (99); Urban Passenger Transportation (94)

Beijing University of Technology (BJUT), Beijing, China

2020 – 2023

B.Eng. in Computer Science

【GPA】 —/100

【Core Courses】 Data Structures and Algorithms (94); Project of Computer Networks (95); Set Theory and Graph Theory (91); Introduction to Software Engineering (95)

Beijing Jiaotong University (BJTU), Beijing, China

2023 – Present

M.Eng. in Transportation Planning and Management

【GPA】 85.0/100

【Core Courses】 Transport Planning (91); Optimization (87); Traffic Flow Theory (92); Deep Learning (87)

📄 PUBLICATIONS & MANUSCRIPTS

• Improved Heuristic to Reduce Oscillations in Transit Assignment on Refined Networks.

Accepted, Transportmetrica A: Transport Science, 2026.

Jiale Li, Yunchao Qu*, Xiao Liang, Jianjun Wu.

Keywords: Transit assignment; Common line problem; Variational inequality; Oscillation detection.

Docs: [Manuscript](#) [Introduction](#) [Code & Configs](#)

• Designing Mobility-as-a-Service Subscription Bundles under a Joint Bundle-Path Equilibrium with Continuous Trip-Frequency Heterogeneity.

Under review, Transportation Research Part B, 2025. Preprint available on SSRN.

Jiale Li, Yunchao Qu*, Ying Lv, Xiao Liang, Jianjun Wu.

Keywords: Mobility-as-a-Service (MaaS); Heterogeneous user equilibrium; MaaS bundle; Bilevel optimization.

• Dynamic Evolution of Mobility-as-a-Service Subscriptions: A Game-Theoretic Day-to-Day Framework for Multimodal Transport.

Abstract accepted, full paper under review, ASCE ICTD 2026.

Jiale Li, Alireza Khani*.

Keywords: Mobility-as-a-Service (MaaS); Bundle adoption; Day-to-day dynamics; Evolutionary game.

🎙 CONFERENCE

CTS 2025 —The 16th International Workshop on Computational Transportation Science

2025.07

【Report】 Bundle Design for Maas: A Bilevel Social-Welfare Framework With Multi-User Multimodal Network Equilibrium

💡 RESEARCH INTERESTS

【Topics】 Mobility-as-a-Service (MaaS); User equilibrium; Pricing & economics; Data-driven operations.

【Methods】 Variational inequalities; Bilevel optimization; Algorithmic assignment; Heuristics; Machine learning & reinforcement learning.

👥 RESEARCH PROJECTS

MaaS Bundle Pricing based on Network Equilibrium —Lead Researcher

2024.10 – Present

【Problem】 Authorities need bundle fees/discounts that steer travel choices while accounting for congestion and cross-bundle substitution; naïve fixed-point updates can oscillate and be non-unique.

【Methods】 Built a bilevel design with a joint bundle-path choice user equilibrium at lower level and a VI reformulation; stated a **sufficient uniqueness** condition via the symmetric Jacobian; implemented alternating price updates with **modified MSA** method.

【Outcome】 *Under review, TR Part B.*

Urban Bus Operations: Stabilizing Assignment —Lead Researcher

2024.3 – 2024.10

【Problem】 Common-line services on congested corridors cause oscillatory passenger allocation, slowing equilibrium computation and destabilizing vehicle dispatch.

【Methods】	Introduced a pre-line-marked passenger-allocation scheme cast as a VI mapping; added oscillation detection & damping with MSA transit assignment.	
【Outcome】	Accepted by <i>Transportmetrica A</i> .	
Inland Waterway Vessel Risk-Alert Platform (AIS + ML) —Co-Developer		2022.3 – 2022.9
【Overview】	Built an early-warning platform for risky behaviors (collision, grounding, fire, self-sinking) on inland waterways using AIS time-series and on-site IoT devices.	
【Methods】	Designed an AIS–MQTT data pipeline; performed time-series preprocessing & feature engineering; applied GAN-based minority augmentation; trained a TCN classifier with class-weighted loss; deployed a Node-RED alert dashboard.	
【Outcome】	National Competition of Transport Science and Technology for Students — National Third Prize .	
On-demand Shuttle Scheduling for Beijing 2022 Winter Olympics —Core Member		2021.7 – 2021.11
【Problem】	Peak ingress at the Yanqing venue required robust, data-driven shuttle plans with verifiable operational performance.	
【Methods】	Wi-Fi probe demand profiling → GA-based scheduling → Vissim microscopic validation and iteration.	
【Outcome】	Spark Fund Key Project; Second Prize (11th Beijing Student Transport S&T Competition); published in <i>China Highway</i> .	
AIoT Modular Parking System with AGVs —Core Member		2021.3 – 2022.12
【Problem】	Legacy facilities under-utilize footprint and suffer long retrieval delays.	
【Methods】	Optimized AGV layout & dispatch across scales; MATLAB scenario simulations for throughput and retrieval time.	
【Outcome】	“Internet+” (Beijing) First Prize; Second Prize (12th Beijing Student Transport S&T Competition).	

⚙️ SELECTED CS PROJECTS

Multi-Objective Evolutionary Algorithms for EV Charging Station —Lead Researcher		2023.1 – 2023.4
【Overview】	Implemented MOGA/MOPSO (Python) with Pareto non-dominated sorting and constraint handling; performed complexity analysis and comparative evaluation; applied to EV-charger siting to explore cost–coverage trade-offs.	
【Outcome】	Delivered a decision-support framework for urban EV-charging deployment.	
Compiler-Style Calculator with Variables (C/C++) —Course Project		2021.9 – 2022.1
【Overview】	Built a lexer & recursive-descent parser (left-recursion elimination), AST; implemented n-ary tree & list structures from scratch; transpiled expressions to high-level code.	
【Outcome】	Demonstrated solid foundations in data structures, parsing, and algorithm design.	
Systems Engineering Practice (Linux/Nginx & DB) —Developer		2021 – 2023
【Overview】	Deployed and maintained a Linux-based web stack: Nginx reverse proxy (WordPress, Kodbox), basic firewall (UFW/firewalld), and MySQL administration.	
【Outcome】	Automated backups and service recovery; documented deployment scripts; supported reproducible research artifacts.	

◆ HONORS & AWARDS

“Internet+” Innovation and Entrepreneurship Competition	Beijing First Prize	2021-07
Beijing Student Transport Science & Technology Competition	Second Prize	2021-12
“Challenge Cup” Capital Student Entrepreneurship Plan	Silver Award	2022-05
17th National Transport S&T Competition	National Third Prize	2022-07
12th Beijing Student Transport S&T Competition	Second Prize	2022-11

⚙️ SKILLS

- **Programming:** Proficient in Python, MATLAB, C++.
- **Software & Tools:** Vissim, Massmotion, EMME; L^AT_EX; Linux; Git/Version Control.
- **Methodologies:** Transportation network modeling; transit assignment; variational inequalities; bilevel optimization; algorithmic techniques; multi-objective metaheuristics.
- **Languages:** IELTS 7.5; strong academic reading & writing.